- linear recurrence relations
- Математика: линейные рекуррентные соотношения
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Recurrence relation — Difference equation redirects here. It is not to be confused with differential equation. In mathematics, a recurrence relation is an equation that recursively defines a sequence, once one or more initial terms are given: each further term of the… … Wikipedia
Hofstadter sequence — In mathematics, a Hofstadter sequence is a member of a family of related integer sequences defined by non linear recurrence relations. equences presented in Gödel, Escher, Bach: an Eternal Golden Braid The first Hofstadter sequences were… … Wikipedia
Nonlinear system — Not to be confused with Non linear editing system. This article describes the use of the term nonlinearity in mathematics. For other meanings, see nonlinearity (disambiguation). In mathematics, a nonlinear system is one that does not satisfy the… … Wikipedia
Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… … Wikipedia
Fibonacci number — A tiling with squares whose sides are successive Fibonacci numbers in length … Wikipedia
combinatorics — /keuhm buy neuh tawr iks, tor , kom beuh /, n. (used with singular v.) See combinatorial analysis. * * * Branch of mathematics concerned with the selection, arrangement, and combination of objects chosen from a finite set. The number of possible… … Universalium
Meijer G-function — In mathematics, the G function was introduced by Cornelis Simon Meijer (1936) as a very general function intended to include most of the known special functions as particular cases. This was not the only attempt of its kind: the generalized… … Wikipedia
Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the … Wikipedia
Generating function — This article is about generating functions in mathematics. For generating functions in classical mechanics, see Generating function (physics). For signalling molecule, see Epidermal growth factor. In mathematics, a generating function is a formal … Wikipedia
Method of undetermined coefficients — In mathematics, the method of undetermined coefficients, also known as the lucky guess method, is an approach to finding a particular solution to certain inhomogeneous ordinary differential equations and recurrence relations. It is closely… … Wikipedia
Discrete mathematics — For the mathematics journal, see Discrete Mathematics (journal). Graphs like this are among the objects studied by discrete mathematics, for their interesting mathematical properties, their usefulness as models of real world problems, and their… … Wikipedia